Analytical Modeling of Magnetic Field Distribution in Inner Rotor Brushless Magnet Segmented Surface Inset Permanent Magnet Machines

author

  • A. Jabbari Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8849, Iran.
Abstract:

Brushless permanent magnet surface inset machines are interested in industrial applications due to their high efficiency and power density. Magnet segmentation is a common technique in order to mitigate cogging torque and electromagnetic torque components in these machines. An accurate computation of magnetic vector potential is necessary in order to compute cogging torque, electromagnetic torque, back electromotive force and self/mutual inductance. A 2D analytical method for magnetic vector potential calculation in inner rotor brushless segmented surface inset permanent magnet machines is proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in a quasi- Cartesian polar coordinate by using sub-domain method. One of the main contributions of the paper is to derive an expression for the magnetic vector potential in the segmented PM region by using hyperbolic functions. The developed method is applied on the performance computation of two prototype surface inset magnet segmented motors with open circuit and on load conditions. The results of these models are validated through FEM method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines

A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi- Cartesian coordinate by using...

full text

Investigation of unbalanced magnetic force in permanent magnet brushless dc machines with diametrically asymmetric winding

The purpose of this paper is the calculation of Unbalanced Magnetic Force (UMF) in permanent magnet brushless DC (PMBLDC) machines with diametrically asymmetric winding and investigation of UMF variations in the presence of phase advance angle. This paper presents an analytical model of UMF in surface mounted PMBLDC machines that have a fractional ratio of slot number to pole number. This model...

full text

Brushless Permanent Magnet Servomotors

Electrical motors drive a variety of loads in today’s world. Almost every industrial process relies on some kind of electrical motors and generators. There exist billions electric motors used in different applications all over the world. Majority of them are small fractional HP motors use in household appliances. However, they used about 5% of the electricity used by the motors. Three phase mot...

full text

Semi-Analytical Modeling of Electromagnetic Performances in Magnet Segmented Spoke-Type Permanent Magnet Machine Considering Infinite and Finite Soft-Magnetic Material Permeability

In this paper, we present a semi-analytical model for determining the magnetic and electromagnetic characteristics of spoke-type permanent magnet (STPM) machine considering magnet segmentation and finite soft-material relative permeability. The proposed model is based on the resolution of the Laplace’s and Poisson’s equations in a Cartesian pseudo-coordinate system with respect to the relative ...

full text

Analytical Calculation of Magnetic Field Distribution and Stator Iron Losses for Surface-Mounted Permanent Magnet Synchronous Machines

Permanent-magnet synchronous machines (PMSMs) are widely used in electric vehicles owing to many advantages, such as high power density, high efficiency, etc. Iron losses can account for a significant component of the total loss in permanent-magnet (PM) machines. Consequently, these losses should be carefully considered during the PMSM design. In this paper, an analytical calculation method has...

full text

Torque-Ripple Minimization in Modular Permanent-Magnet Brushless Machines

This paper discusses the suitability of four-phase, five-phase, and six-phase modular machines, for use in applications where servo characteristics and fault tolerance are key requirements. It is shown that an optimum slot number and pole number combination exists, for which excellent servo characteristics could be achieved, under healthy operating conditions, with minimum effects on the power ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 3

pages  259- 269

publication date 2018-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023